Comparative Analysis of Metaheuristic Optimizers in the Performance Optimization of Wire Electric Discharge Machining Processes

  • Subhankar Saha Department of Mechanical Engineering, National Institute of Technology Silchar, India
  • Saikat Ranjan Maity Department of Mechanical Engineering, National Institute of Technology Silchar, India
  • Sudip Dey Department of Mechanical Engineering, National Institute of Technology Silchar, India
Keywords: WEDM, optimization, metaheuristic algorithms, two-sample t-test, sensitivity analysis

Abstract

WEDM is an intricate process whereby improper selection of machine parameters often leads to undesirable performances. Therefore, the extraction of optimal machining parameters is pivotal for achieving better performances in WEDM. Metaheuristic optimizers have gained immense popularity due to their capability of providing global optimal solutions. The application of recently reported metaheuristic optimizers in non-traditional machining processes is rarely being explored. In light of the above, the current paper examines the use of six recently reported metaheuristic optimizers, namely the ant lion optimization (ALO), chimp optimization algorithm (ChoA), moth flame optimization (MFO), spotted hyena optimization (SHO), Harris Hawk optimization algorithm (HHO), Marine predator algorithm (MPA) to optimize WEDM performances in three WEDM processes. Particle swarm optimization (PSO) and Teaching learning-based optimization (TLBO), two well-known existing optimization approaches, are also included in this study to enable a reasonable comparison of the algorithms' performance. The algorithms are compared with parameters such as the quality of optimal solutions, convergence behavior, and average computational time. HHO algorithm is found to be robust amongst the eight competitors in terms of culminating the global optimal solution and propensity to quickly converge to the global optimal solution which corroborates the high exploration and exploitation capability of the algorithm. Therefore, HHO optimizer can be exploited in future to determine the optimal operating conditions for other manufacturing processes.

Downloads

Download data is not yet available.

References

Abualigah, L., Shehab, M., Alshinwan, M., Mirjalili, S., & Elaziz, M.A. (2021). Ant lion optimizer: a comprehensive survey of its variants and applications. Archives of Computational Methods in Engineering, 28, 1397-1416. https://doi.org/10.1007/s11831-020-09420-6

Devarajaiah, D., & Muthumari, C. (2018). Evaluation of power consumption and MRR in WEDM of Ti–6Al–4V alloy and its simultaneous optimization for sustainable production. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40, 1-18. https://doi.org/10.1007/s40430-018-1318-y

Dhiman, G., & Kumar, V. (2017). Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Advances in Engineering Software 114, 48-70. https://doi.org/10.1016/j.advengsoft.2017.05.014 DOI: https://doi.org/10.1016/j.advengsoft.2017.05.014

Faramarzi, A., Heidarinejad, M., Mirjalili, S., & Gandomi, A.H. (2020). Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Systems with Applications. 152, 113377. https://doi.org/10.1016/j.eswa.2020.113377

Garg, M.P., Jain, A., & Bhushan, G. (2012). Modelling and multi-objective optimization of process parameters of wire electrical discharge machining using non-dominated sorting genetic algorithm-II. . Proceedings of the Institution of Mechanical Engineers, Part B, 226, 1986-2001. https://doi.org/10.1177/0954405412462778 DOI: https://doi.org/10.1177/0954405412462778

Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, & M., Chen, H. (2019). Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems, 97, 849-872. https://doi.org/10.1016/j.future.2019.02.028

Houssein, E.H., Mahdy, M.A., Fathy, A., & Rezk, H. (2021). A modified Marine Predator Algorithm based on opposition based learning for tracking the global MPP of shaded PV system. Expert Systems with. Applications, 183, 115253. https://doi.org/10.1016/j.eswa.2021.115253

Juneja, M., & Nagar, S.K. (2016). Particle swarm optimization algorithm and its parameters: A review. In 2016 International Conference on Control, Computing, Communication and Materials (ICCCCM) (pp. 1-5). IEEE. https://doi.org/10.1109/ICCCCM.2016.7918233 DOI: https://doi.org/10.1109/ICCCCM.2016.7918233

Kuriakose, S., & Shunmugam, M.S. (2005). Multi-objective optimization of wire-electro discharge machining process by non-dominated sorting genetic algorithm. Journal of Materials Processing Technology, 170, 133-141. https://doi.org/10.1016/j.jmatprotec.2005.04.105 DOI: https://doi.org/10.1016/j.jmatprotec.2005.04.105

Krishna, M.M., Panda, N., & Majhi, S.K. (2021). Solving Traveling Salesman Problem using Hybridization of Rider Optimization and Spotted Hyena Optimization Algorithm, Expert Systems with Applications, 115353. https://doi.org/10.1016/j.eswa.2021.115353

Khan, N.Z., Khan, Z.A., Siddiquee, A.N., & Chanda, A.K. (2014). Investigations on the effect of wire EDM process parameters on surface integrity of HSLA: A multi-performance characteristics optimization. Production & Manufacturing Research, 2, 501-518. https://doi.org/10.1080/21693277.2014.931261

Kaur, M., Kaur, R., Singh, & N., Dhiman, G. (2021). SChoA: a newly fusion of sine and cosine with chimp optimization algorithm for HLS of data paths in digital filters and engineering applications, Engineering with Computers, 1-29. https://doi.org/10.1007/s00366-020-01233-2

Khishe, M., & Mosavi, M.R. (2020). Chimp optimization algorithm. Expert Systems with Applications, 149, 113338. https://doi.org/10.1016/j.eswa.2020.113338

Lee, K.Y., & Park, J.B. (2006). Application of particle swarm optimization to economic dispatch problem: advantages and disadvantages. In 2006 IEEE PES Power Systems Conference and Exposition (pp. 188-192), IEEE. https://doi.org/10.1109/PSCE.2006.296295 DOI: https://doi.org/10.1109/PSCE.2006.296295

Majumder, H., & Maity, K. (2018). Prediction and optimization of surface roughness and micro-hardness using grnn and MOORA-fuzzy-a MCDM approach for nitinol in WEDM. Measurement, 118, 1-13. https://doi.org/10.1016/j.measurement.2018.01.003 DOI: https://doi.org/10.1016/j.measurement.2018.01.003

Mandal A, Dixit, A.R., Das, A.K., & Mandal, N. (2016). Modeling and optimization of machining nimonic C-263 superalloy using multicut strategy in WEDM. Materials and Manufacturing Processes, 31, 860-868. https://doi.org/10.1080/10426914.2015.1048462 DOI: https://doi.org/10.1080/10426914.2015.1048462

Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge- Based Systems. 89, 228-249. https://doi.org/10.1016/j.knosys.2015.07.006 DOI: https://doi.org/10.1016/j.knosys.2015.07.006

Mirjalili, S. (2015). The ant lion optimizer, Advances in Engineerimg Software. 83, 80-98. https://doi.org/10.1016/j.advengsoft.2015.01.010 DOI: https://doi.org/10.1016/j.advengsoft.2015.01.010

Mansoor, M., Mirza, A.F., & Ling, Q. (2020). Harris hawk optimization-based MPPT control for PV systems under partial shading conditions. Journal of Cleaner Production, 274, 122857. https://doi.org/10.1016/j.jclepro.2020.122857

Nayak, B.B., & Mahapatra, S.S. (2016). Optimization of WEDM process parameters using deep cryo-treated Inconel 718 as work material. Engineering Science and Technology, an International Journal, 19, 161-170. https://doi.org/10.1016/j.jestch.2015.06.009 DOI: https://doi.org/10.1016/j.jestch.2015.06.009

Naik, M.K., Panda, R., Wunnava, A., Jena, B., & Abraham, A. (2021). A leader Harris hawks optimization for 2-D Masi entropy-based multilevel image thresholding. Multimedia Tools and Applications, 80, 35543-35583. https://doi.org/10.1007/s11042-020-10467-7

Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization. Swarm Intelligence., 1, 33-57. https://doi.org/10.1007/s11721-007-0002-0 DOI: https://doi.org/10.1007/s11721-007-0002-0

Ramakrishnan, R., & Karunamoorthy, L. (2008). Modeling and multi-response optimization of Inconel 718 on machining of CNC WEDM process. Journal of Materials Processing Technology, 207, 343-349. https://doi.org/10.1016/j.jmatprotec.2008.06.040 DOI: https://doi.org/10.1016/j.jmatprotec.2008.06.040

Rao, R.V., Savsani, V.J., & Vakharia, D.P. (2011). Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems, Computer Aided Design. 43, 303-315. https://doi.org/10.1016/j.cad.2010.12.015 DOI: https://doi.org/10.1016/j.cad.2010.12.015

Sadeghi, M., Razavi, H., Esmaeilzadeh, A., & Kolahan, F. (2011). Optimization of cutting conditions in WEDM process using regression modelling and Tabu-search algorithm. Proceedings of the Institution of Mechanical Engineers, Part B, 225, 1825-1834. https://doi.org/10.1177/0954405411406639 DOI: https://doi.org/10.1177/0954405411406639

Sultana, S., Roy, P.K. (2014). Multi-objective quasi-oppositional teaching learning based optimization for optimal location of distributed generator in radial distribution systems, International Journal of Electrical Power & Energy Systems, 63, 534-545. https://doi.org/10.1016/j.ijepes.2014.06.031 DOI: https://doi.org/10.1016/j.ijepes.2014.06.031

Sabahno, M., Safara, F. (2021). ISHO: Improved spotted hyena optimization algorithm for phishing website detection. Multimedia Tools and Applications, 1-20. https://doi.org/10.1007/s11042-021-10678-6

Shehab, M., Abualigah, L., Al Hamad H., Alabool, H., Alshinwan, M., & Khasawneh, A.M.. (2021). Moth–flame optimization algorithm: variants and applications, Neural. Computing and Applications, 32, 9859-9884. https://doi.org/10.1007/s00521-019-04570-6

Shan, W., Qiao, Z., Heidari, A.A., Chen, H., Turabieh, H., & Teng, Y. (2021). Double adaptive weights for stabilization of moth flame optimizer: balance analysis, engineering cases, and medical diagnosis. Knowledge.-Based Systems, 214, 106728. https://doi.org/10.1016/j.knosys.2020.106728

Saha, S., Maity, S.R., Dey, S., & Dutta, S. (2021). Modeling and combined application of MOEA/D and TOPSIS to optimize WEDM performances of A286 superalloy, Soft Computing, 25, 14697–14713. https://doi.org/10.1007/s00500-021-06264-5

Tonday, H.R., & Tigga, A.M. (2019). An empirical evaluation and optimization of performance parameters of wire electrical discharge machining in cutting of Inconel 718. Measurement, 140, 185-196. https://doi.org/10.1016/j.measurement.2019.04.003

Tarng, Y.S., Ma, S.C., & Chung, L.K. (1995). Determination of optimal cutting parameters in wire electrical discharge machining. International Journal of Machine Tools and Manufacture 35, 1693-1701. https://doi.org/10.1016/0890-6955(95)00019-T DOI: https://doi.org/10.1016/0890-6955(95)00019-T

Uzlu, E., Kankal, M., Akpınar, A., & Dede, T. (2014). Estimates of energy consumption in Turkey using neural networks with the teaching–learning-based optimization algorithm. Energy. 75, 295-303. https://doi.org/10.1016/j.energy.2014.07.078 DOI: https://doi.org/10.1016/j.energy.2014.07.078

Wolpert, D.H., & Macready, M.G. (1997). No Free Lunch Theorems for Optimization. IEEE Transactions on Evolutionary Computation. https://doi.org/10.1109/4235.585893 DOI: https://doi.org/10.1109/4235.585893

Yao, Y., Li, Y., Xie, D., Hu, S., Wang, C., & Li, Y. (2021). Coverage Enhancement Strategy for WSNs Based on Virtual Force-Directed Ant Lion Optimization Algorithm. IEEE Sensors Journal, (2021). https://doi.org/10.1109/JSEN.2021.3091619

Yakout, A.H., Sabry, W., Abdelaziz, A.Y., Hasanien, H.M., AboRas. K.M., & Kotb, H. (2021). Enhancement of frequency stability of power systems integrated with wind energy using marine predator algorithm based PIDA controlled STATCOM, Alexendria Engineering Journal. https://doi.org/10.1016/j.aej.2021.11.011

Zhu, G., & Kwong, S. (2010). Gbest-guided artificial bee colony algorithm for numerical function optimization. Applied Mathematics and Computation, 217, 3166-3173. https://doi.org/10.1016/j.amc.2010.08.049 DOI: https://doi.org/10.1016/j.amc.2010.08.049

Published
2022-11-24
How to Cite
Saha, S., Maity, S. R., & Dey, S. (2022). Comparative Analysis of Metaheuristic Optimizers in the Performance Optimization of Wire Electric Discharge Machining Processes. Operational Research in Engineering Sciences: Theory and Applications. https://doi.org/10.31181/oresta241122166s
Section
Articles